Phosphate modified carbon nanotubes for oxidative dehydrogenation of n-butane
نویسندگان
چکیده
منابع مشابه
Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane.
Butenes and butadiene, which are useful intermediates for the synthesis of polymers and other compounds, are synthesized traditionally by oxidative dehydrogenation (ODH) of n-butane over complex metal oxides. Such catalysts require high O2/butane ratios to maintain the activity, which leads to unwanted product oxidation. We show that carbon nanotubes with modified surface functionality efficien...
متن کاملVanadium Oxide Supported on Al-modified Titania Nanotubes for Oxidative Dehydrogenation of Propane
In this study, characterization of vanadia supported on Al-modified titania nanotubes (TiNTs) synthesized by the alkaline hydrothermal treatment of TiO2 powders has been reported. A promising catalyst for oxidative dehydrogenation (ODH) of propane was prepared via the incipient wetness impregnation method. The morphology and crystalline structure of TiNTs were characterized by transmission elec...
متن کاملOxidative dehydrogenation of 9,10-dihydroanthracene using multi-walled carbon nanotubes
Multi-walled carbon nanotubes (MWCNTs) have been used in the oxidative dehydrogenation of 9,10-dihydroanthracene in an organic solvent (toluene) using molecular oxygen as the oxidant, and in the absence of trace amounts of metals. The process is very selective and almost no anthraquinone is formed. Thermal treatment of the MWCNTs at 2600 °C favors deoxygenation of the support and markedly impro...
متن کاملThe Ti3AlC2 MAX Phase as an Efficient Catalyst for Oxidative Dehydrogenation of n‐Butane
Dehydrogenation or oxidative dehydrogenation (ODH) of alkanes to produce alkenes directly from natural gas/shale gas is gaining in importance. Ti3 AlC2 , a MAX phase, which hitherto had not been used in catalysis, efficiently catalyzes the ODH of n-butane to butenes and butadiene, which are important intermediates for the synthesis of polymers and other compounds. The catalyst, which combines b...
متن کاملElectrochemical Sensor for Determination of Fenitrothion at Multi-wall Carbon Nanotubes Modified Glassy Carbon Electrode
A sensor, based on multi-wall carbon nanotubes modified glassy carbon electrode (MWCNT/GCE), was developed for determination of fenitrothion. Determining the surface area of MWCNT/GCE showed that this surface is three times more active than that of a glassy carbon electrode. The experimental parameters, such as the amount of MWCNTs, pH of the fenitrothion solution, preconcentration potential an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Energy Chemistry
سال: 2016
ISSN: 2095-4956
DOI: 10.1016/j.jechem.2016.02.010